Performance of a subsurface flow pilot wetland for treating high concentrations of nitrogen, phosphorus and carbon

Rajat K. Chakraborti and James S. Bays; CH2M
Outline

• Background
• Wetlands for concentrate management
• Pilot study description
• Results
 – Removal efficiency of nutrients
 – Mass balance of Nitrogen
• Conclusions
Oxnard: A Coastal Community in Southern California is Building Needed Future Water Supply Capacity

- **Semi arid region** (annual rainfall: 18 inches; temperature range between 6°C and 24°C; pan evaporation: 60 in/yr)
- Center for agricultural production
- Proximity to coast allows for ocean outfall for wastewater, including membrane concentrate
Oxnard AWPF Process Includes Wetlands
Treatment of Concentrate Sidestream

- Treat high flows
- Only treating a portion of concentrate
- Finished water comply with GW recharge criteria

- Question: Can the concentrate be a reusable resource?
Oxnard Previously Established Feasibility of Treating Groundwater Concentrate Using Wetlands

- Surface flow high marsh (SFHM),
- Surface flow low marsh (SFLM),
- Horizontal subsurface flow (SSF),
- Peat-based vertical upflow (VF),
- Submerged aquatic vegetation (SAV), and
- Saltgrass evaporation bed (SE).

✓ 6 types
✓ 3 years
✓ Metals, nutrients
✓ Toxicity reduction
✓ Volume reduction

To gain confidence in the performance of wetlands, another pilot study was needed before design of the full scale plant.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Secondary Effluent (mg/L)</th>
<th>RO Concentrate (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>1,750</td>
<td>11,833</td>
</tr>
<tr>
<td>NO$_3$-N</td>
<td>1.2</td>
<td>14</td>
</tr>
<tr>
<td>TN</td>
<td>25.9</td>
<td>170</td>
</tr>
<tr>
<td>NH$_3$-N</td>
<td>22.2</td>
<td>121.7</td>
</tr>
<tr>
<td>TOC</td>
<td>16.6</td>
<td>72.3</td>
</tr>
</tbody>
</table>

This study

GREAT program

Brackish Water
- RO Concentrate
 - TDS: 2 - 5 g/L
 - TDS: 12-15 g/L
 - NH$_3$-N: 0.1 – 0.5 mg/L
 - NH$_3$-N: 100 – 150 mg/L
 - NO$_3$-N: 30-50 mg/L
 - NO$_3$-N: 20 - 40 mg/L
 - Se: 20 – 30 µg/L
 - Se: 30 – 60 µg/L
The AWPF Will Treat Higher Strength Concentrate: A Bridging Study Was Needed to Confirm Results

Three Types of Treatment Wetlands (1.2 Acre):

- **Subsurface horizontal flow** for *ammonia* removal (aeration, recirculation, nitrification of NH4)

- **Anaerobic subsurface upflow** reactors for *metals* reduction (bacterial reduction for NO3, Se)

- **Free water surface** wetlands for *habitat* and *nutrient* removal (denitrification, contaminant polishing)

- Demonstration wetlands adjacent to the visitor center; water needs to “good neighbor”
A Pilot Study was Needed to Bridge the Gap between Concentrate Strengths

Objectives

1. Confirm the survival and growth of brackish marsh plants receiving the RO concentrate

2. Confirm that the aesthetics of the treatment wetland would be acceptable (i.e., no offensive odors or colors would be generated)

3. Assess the pollutant removal performance of wetlands treating the RO concentrate
Trailer- Mounted Pilot Wetland Co-Located with RO Pilot System at WWTP

Bulrush (*Schoenoplectus californicus*)

- The wetland was well vegetated, with some open water; Unique setup
- Flow rate adjustable

L = 3.7 m
W = 2.4 m
D = 1.3 m
A = 8.9 m²
V = 11.9 m³

Portable Subsurface Flow Constructed Wetland

Mobile Environmental Solutions (MES), Tustin, CA
Hydraulic Data Summary

<table>
<thead>
<tr>
<th>Dates</th>
<th>Sampling duration (day)</th>
<th>Flows (L/min)</th>
<th>HRT (day)</th>
<th>HLR (cm/day)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/1/2008 - 9/24/2008</td>
<td>23</td>
<td>1.9</td>
<td>1.3</td>
<td>24.5</td>
<td>Initial Acclimation Period; no sampling</td>
</tr>
<tr>
<td>10/1/2008 - 1/19/2009</td>
<td>110</td>
<td>1</td>
<td>2.5</td>
<td>12.9</td>
<td>Sampling period 1</td>
</tr>
<tr>
<td>1/20/2009 - 3/5/2009</td>
<td>40</td>
<td>0.5</td>
<td>5</td>
<td>6.5</td>
<td>Sampling period 2</td>
</tr>
</tbody>
</table>

HLR = Hydraulic Loading Rate
HRT = Hydraulic Residence Time

- These are relatively higher HLRs and shorter HRTs than most wetlands
Normal, Vigorous Plant Growth and Survival

Before (T = 0, August 2008)

After (T = 7 Months, March 2009)

- Plant response shows no adverse effects due to high salt content
Ammonium Mass Reduction: 42%

- Consistent reduction – impact of HRT is negligible
- High strength loading from reclaimed water is unusual for wetlands
- Uptake and nitrification in soil root zone
Consistent Loading Response Position of the Oxnard AWPF Pilot Indicates Similarity to Global Data Set: Ammonia-N

- The dominant removal processes are microbial, not plants
- Sufficient oxygen is required to achieve full nitrification

Source: Kadlec & Wallace 2009

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_i</td>
<td>mg/L</td>
<td>157</td>
</tr>
<tr>
<td>C_o</td>
<td>mg/L</td>
<td>120</td>
</tr>
<tr>
<td>Load</td>
<td>g/m²*yr</td>
<td>5,441</td>
</tr>
</tbody>
</table>
Oxidized Nitrogen (NOx-N) Mass Reduction: 75% (Nitrite-N + Nitrate-N)

- Not enough oxygen to complete transformation of nitrite to nitrate
Nitrogen Mass Balance Analysis (6 months)

Processes:
- Particulate **settling** and resuspension
- Diffusion of dissolved forms
- Plant **translocation**
- **Litterfall**
- Ammonia (un-ionized) **volatilization** (gasification)
- Anaerobic ammonia oxidation (Anamox)
- Sorption of soluble nitrogen on substrates (detritus and sediment)

Major Transformation Processes:
- Ammonification (mineralization)
- Nitrification
- Denitrification (carbon dependent)
- Assimilation
- Decomposition

Inflow:
- NH$_4$: 54% of load; ON: 41% of load

Outflow:
- NH$_4$: 77% of load; ON: 20% of load

Removed TN: 61% of load

Microbial metabolism dominates transformation
Total Phosphorus Mass Reduction: 25%

- Mass reduction is consistent – impact of HRT is negligible
TOC Mass Reduction: 37%

- Slight reduction due to metabolism of labile carbon but leaving residual carbon
- Reduction is consistent with denitrification
Conclusions

• Plants tolerated the high levels of salts and nutrients
 – TDS ranged between 15-25 g/L
• No odor detectable from the RO concentrate influent
• Mass balance of nutrients shows distribution of mass in soil, water, air and outflow
• Reduction in nitrogen concentration and mass
• Treatment performance consistent with wetland database
• Doubled residence time did not produce significantly better performance
• Wetlands technology can support healthy ecosystems, recreation, reduce concentrate volume, and polish effluent and reduce concentration of pollutants
AWPF Demonstration Wetland Unit Process Construction

- Visitor center and wetlands
- Wetlands earthwork
- Wetlands channels
- Horizontal flow cells
- Surface flow cells
- Wetlands after planting

- No concentrate available
- Currently, monitored by Bureau of Reclamation
Acknowledgements

We would like to thank:

• Jeff Miller – City of Oxnard/Wastewater Division
• Mark Moise – City of Oxnard/Wastewater Division
• Thien Ng – City of Oxnard/Wastewater Division
• Anthony Emmert – City of Oxnard/Engineering Department
• Lou Balderrama – City of Oxnard/Wastewater Division
• Terry Kirsch – City of Oxnard/Wastewater Division
• Paul Morris – Pall Corporation
• Allan Wright – Membrane Systems
• Kathy McKinley – CH2M/Corvallis Laboratory
• Dr. Stephen Lyon – Mobile Environmental Solutions (MES)
• Mainstreet Architects and Planners